#### Math - 2018-19

# T.1 - Angles and Trig Functions

T.1The student, given a point on the terminal side of an angle in standard position, or the value of the trigonometric function of the angle, willdeterminethe sine, cosine, tangent, cotangent, secant, and cosecant of the angle.

*Adopted: 2016*

### BIG IDEAS

### UNDERSTANDING THE STANDARD

· Triangular trigonometric function definitions are related to circular trigonometric function definitions.

· Both degrees and radians are units for measuring angles.

· Drawing an angle in standard position will force the terminal side to lie in a specific quadrant or axis.

· A point on the terminal side of an angle determines a reference triangle from which the values of the six trigonometric functions may be derived.

· If one trigonometric function value is known, then a triangle can be formed to use in determining the other five trigonometric function values.

### ESSENTIALS

**The
student will use problem solving, mathematical communication, mathematical
reasoning, connections, and representations to**

·
T.1_{1} **Define**
the six triangular trigonometric functions of an angle in a right triangle.

·
T.1_{5} Given one trigonometric function value, **determine** the other five trigonometric
function values.

·
T.1_{4} **Determine**
the value of any trigonometric function when given a point on the terminal side
of an angle in standard position.

·
T.1_{2} **Draw**
a reference right triangle when given a point on the terminal side of the angle
in standard position.

·
T.1_{3} **Draw**
a reference right triangle when given the value of a trigonometric function of
the angle.

### KEY VOCABULARY

*Updated: May 29, 2018*